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Abstract 
 
This paper presents a study using Genetic Algorithms (GA) to solve the star pattern recognition 
problem associated with star tracker attitude determination systems.  Characteristics of the stars 
that are visible within the Field of View (FOV) of an imager are defined with regard to relative 
distances and angles.  The proposed GA minimizes the discrepancy between the characteristics 
of the stars inside the actual FOV and a candidate FOV selected from the star map in order to 
determine the inertial coordinates of the FOV bore sight.  The proposed algorithm has the 
capability of determining the rotational angle between the spacecraft’s coordinate system and 
that of a standardized star map.  Simulations indicate that the GA approach is highly suited for 
this type of problem. 
 

Introduction 
 
Attitude, as applied to spacecraft, implies the 
rotational motion about its center of mass. 
Almost all spacecraft have attitude 
requirements, for example the pointing of 

antennas and cameras, or the orientation of 
solar panels.1 Attitude control involves a two-
step process: measuring the attitude and then 
being capable of controlling the attitude. To 
determine the attitude, various methods may 
be employed, for example sun sensors, earth 
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horizon sensors, magnetometers, and star 
sensors. Each technique has its advantages 
and disadvantages that will not be discussed 
in this paper. Star sensors (also called star 
trackers) are the selected method of attitude 
measurement for the work presented in this 
paper. The operation of a star tracker can be 
summarized as directing some image-forming 
device towards the stars. If the image can be 
matched to a reference, the direction of the 
imaging device is known. If the axis of the 
imaging device is known with respect to the 
spacecraft, then the attitude of the spacecraft 
is also known.2  Controlling or changing the 
attitude can be accomplished with thrusters, 
momentum wheels, torque rods, to name a 
few, and is not discussed in this paper. 
 
An attitude measurement sensor is typically 
required to operate in three different modes:  
(1) “lost in space”, (2) maintain a 
predetermined attitude, and (3) track (or 
rotate) from one attitude to another.  This 
paper focuses on the “lost in space” mode in 
which it is desired to determine from celestial 
observations the attitude (or in other terms, 
where the spacecraft is pointing).  An 
intelligent control theory, Genetic Algorithms 
(GA), is used as a pattern recognition tool to 
match imaged star patterns against those 
found in a star map. Genetic Algorithms are 
evolutionary algorithms that rely on Darwin’s 
concept of “survival of the fittest” to 
determine the optimum solution, in this case, 
the closest match to the star map. 
 
This paper presents a background of Genetic 
Algorithms and discusses their 
implementation for star pattern recognition. 
Simulations were performed with a randomly 
generated star map; the GA routine would 
converge to a candidate location on the map 

and then reset the convergence criteria to 
allow a second level GA convergence to an 
even tighter location (x, y coordinates).  
Additionally, once convergence is achieved, 
the angle of rotation between the image and 
the star map can be determined and implies 
the rotation angle of the spacecraft with 
respect to the star patterns along the plane of 
the stars. 
 

Theory of Genetic Algorithms 
 
Optimization algorithms traditionally involve 
the computation of gradients and the 
application of the Weierstrass Theorem to 
determine the existence of a global minimum. 
If constraints are involved, Lagrangian 
multipliers are used along with the Kuhn-
Tucker Theorem.  Nonetheless, finding the 
global optimum point is not guaranteed.  A 
different approach to the optimization 
problem, called Genetic Algorithms3, has 
become more and more popular in recent 
years.  This new algorithm does not involve 
any derivatives and is basically a numerical 
approach to the problem.  Genetic Algorithms 
are evolutionary algorithms that simulate 
Darwin’s survival of the fittest principle.  
These algorithms involve some amount of 
randomness in their procession through each 
step, which in turn ensures that with sufficient 
number of iterations (known as generations) 
the global optimum point will be found.  In 
addition to the ability to find the global 
optimum point, a set of candidate solutions 
are available.  The general outline for such an 
algorithm is given in Figure 1.  
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Figure 1.  Outline of a Genetic Algorithm 
using the binary format. 

 
First the initial population of candidate 
solutions is randomly generated and 
represented as chromosomes in the form of 
genes.  This can be done in continuous 
numbers or in a binary format.  Figure 1 
reflects the binary representation, which is 
easier to be visualized.  The continuous 
number approach is very similar to the binary 
approach.  The encoding of the parameters 
into binary format is a simple conversion 
from a floating-point format to binary 
numbers or gray code number.  Each 
parameter represents one gene and the set of 
parameters to describe the problem constitutes 
one chromosome.  The generated 
chromosomes are evaluated based on a cost or 
objective function (this function is also often 
referred to as the fitness function) and ranked 
in terms of its fitness.  The evaluation of each 
chromosome requires a translation into real 
numbers for each gene so that it can be 
computed with the given objective function.  
A subset of the next generation of candidate 
solutions is selected based on their 
performance with the objective function.  A 
mating process generates the remaining sets 
of the new generation, where the best 
performing candidate solutions comprise the 

subset of the parents.  The selection of the 
parents is done randomly based on the 
probability density function, which can be 
formulated based on the chromosome’s 
performance.  The mating process involves a 
low number of so called crossover points, 
where the chromosome of each parent is 
divided and the resulting parts recombined 
with other parts of the other parent 
chromosome.  For example, for a single 
crossover point the parents will generate two 
offspring, for two crossover points, the 
parents will generate three offspring, etc.  In 
addition to the mating process, a mutation rate 
is also imbedded in the generation of the new 
population.  For binary representation, the 
mutation is given by changing the binary bits 
for an arbitrary small percentage of the entire 
collection of zeros and ones.  The mutation 
enables the search for the optimum solution to 
overcome local minimums and ‘jump’ over 
constraint boundaries in the search space to 
locate the global minimum/optimum.  This 
process of selection, mating, and mutation is 
repeated a number of times until the best 
performing candidate solution converges to 
some stationary value.  Besides the capability 
of overcoming local minima, some additional 
advantages of a genetic algorithm are the ease 
with which large numbers of parameters can 
be handled, the fact that they do not require 
the traditional approach of taking derivatives, 
the fact that they result in a set of optimum 
candidate solutions rather than a single 
candidate solution, that a fairly complex 
system with numerous constraints can be 
solved, and that they work well with 
experimental data as well as simulated data. 

 
Application of Genetic Algorithms to Star 

Pattern Recognition 
 
A star sensor initiates its attitude 
determination routine by taking an image of a 
star pattern, bounded by the field of view 
(FOV) and centered along the bore-sight.  It is 
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assumed that the FOV size is known as well 
as the positioning of the imaging system’s 
bore-sight with respect to the axis of the 
spacecraft.  Since the distance from the 
observer to the stars is so large, it appears as if 
the three-dimensional location of the stars is 
projected onto a two-dimensional surface, 
known as the celestial sphere.  As such, the 
geometry relationships between stars can be 
treated as if they are all on the same plane.  
Unfolding the celestial sphere results in a flat 
surface, often represented as a rectangular 
map, with the north celestial pole aligned with 
the north rotational axis of the earth. 
 
In solving the attitude determination problem, 
parameters must be computed and then 
compared between the imaged FOV and the 
candidate FOV’s derived from the GA and the 
star map. The parameters used for this effort 
are distances to stars (R) and the angle of 
rotation (θθθθ) from a reference to the R vector.  
The distance to each star in the field of view 
is referenced from the center of the FOV 
(bore-sight).  The angle is referenced from the 
x-axis (xi in Figure 2) and measured counter-
clockwise to the R vector.  The magnitude of 
the R vectors for all stars in the FOV is 
combined into a distance vector (D).  R values 
are numbered sequentially, starting with the 
star closest to the bore-sight (smallest R 
magnitude), proceeding to the next closest, 
and so forth.  The distance vector for the FOV 
imaged stars is given by 
 
 [ ]na RRR ,...,, 21=D  (1) 
 
where n is the number of stars visible in the 
FOV whose parameters are used in the GA 
routine.  The subscript “a” refers to the actual 
(or imaged) values.  Angles are numbered 
according to the sequence above for the R 
values.  For example, the closest star is 
numbered R1 with a corresponding angle of 
θ1.  The θ values are combined, in order of 

their numbering, into an angle vector (θθθθa) and 
is given by 
 
 [ ]na θθθ ,...,, 21=θ  (2) 
 

 
Figure 2. Schematic showing the method for 

calculating the distance R and angle θ. 
 
Each chromosome generated with the GA 
corresponds to a candidate (x,y) location of 
the imager’s bore-sight on the star map (xi, yi 
coordinate system in Figure 3, for the ith 
chromosome).  Based on the method 
described previously, a distance vector and 
angle vector (Di and θθθθi, respectively) is 
computed for each chromosome. A cost 
function (Ci) for the ith chromosome is 
defined as the sum of the differences of Rk 
between the actual distance vector and the 
chromosome’s distance vector: 
 

 [ ] [ ]∑ −=
n

k
kikai RRC DD  (3) 

 
The top chromosome is then defined as the 
chromosome with the minimum cost function 
for a given generation.  Once the top 
chromosome’s cost function is less than a 
predetermined convergence value (δ), then the 
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routine is completed and the program moves 
on to the next GA routine. 

 
Figure 3.  Star map with chromosomes 

(candidate x, y locations) for the GA 
approach. 

 
The concept of spiral genetic algorithm 
(SGA) is incorporated which decreases the 
search area of the subsequent GA’s that is 
proportional to the minimal cost function (δ) 
of the previous GA and thus decreasing the 
cost to provide better convergence.  The next-
level GA routine bounds its search, centered 
around the top chromosome from the previous 
GA routine, extending out some value ∆ on 
all sides.  The limiting value, ∆, is determined 
from the size of the original FOV as well as 
the previous GA’s target minimal cost.  A 
new minimal cost provides a convergence 
criterion for the new GA routine. This process 
continues (spirals) until a solution is found 
that approximates the observed location with 
an error that approaches zero (see Figure 4). 
 
Once a candidate position is found, the angle 
of rotation (φ) of the spacecraft with respect to 
the star map can be computed using still 
another GA routine (see Figure 5).  If the 
candidate position matches that imaged along 
the FOV’s bore-sight, then there should be a 
distinct constant angular value, when 

added/subtracted from the FOV-imaged 
angles, that produces a perfect match to a 
position on the star map.  If a distinct single 
rotation angle cannot be determined, then the 
process restarts with the “lost in space” GA.  
The equation of cost function for the angle of 
rotation will be 
 

 [ ] [ ]∑ −=
n

k
kikaiC θθ θθ  (4) 

 

Figure 4.  Concept picture of the Spiral 
Genetic Algorithm approach. 

 

 
Figure 5.  Picture showing the rotation angle 

φ with respect to the celestial sphere 
coordinates. 
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Simulation Results 
 
Simulations are carried out using two GA’s 
for finding the location using distance and one 
GA for calculating the angle of rotation (φ) 
after the convergence is met using the 
distance values. For the first GA using 
distances, a simulated star map was generated 
for 1000 randomly placed stars. The 
dimensions of the overall star map are 300 
units by 300 units (-150 to +150) and 25 by 
25 units for each individual FOV.  The 
number of stars used in the FOV (typically m 
= 15 to 20) for a particular simulation is kept 
constant.  If the FOV has fewer stars, then 
zeros are added to the beginning of the 
distance vector for a total of m stars (actual 
plus added).  If the FOV has more stars, then 
only the m closest stars to the center are 
included.  A total of 300 initial locations for 
candidate FOVs were selected randomly, of 
which 150 were retained as steady state 
population for each generation.  Of the 150 
candidate FOVs, 80 are selected based on 
their performance measured by the cost 
function to survive into the new generation. 
80 new FOVs were generated using the 
pairing, mating, and mutation algorithm 
described in the Theory section.  The 
mutation rate was set to 6%.  None of these 
parameters were optimized, which could 
potentially increase the efficiency of the 
proposed algorithm dramatically.  Such an 
optimization is based on the distribution of 
the stars in the star map and its resulting 
sensitivities based on the size of the candidate 
FOV and the proposed fitness function (cost 
function).  If the cost function does not 
converge to the expected value, a new set of 
chromosomes is taken and the algorithm is 
run from the beginning with the new 
chromosomes. 
 
After the cost is converged to a value which is 
less than or equal to the cost required in the 
first GA, a second GA that has a total of 100 

initial locations of candidate FOVs were 
selected randomly in the region around the 
point where the first GA is converged with 
some error ∆ around the point of convergence.  
From these 100 initial locations 50 were 
retained as steady state population for each 
generation, of which 30 are selected based on 
their performance measured by the cost 
function.  The mutation rate remained 6%. 
 
For the GA to find the angles, a total of 120 
initial locations of the angles (degrees) were 
selected randomly, of which 60 were retained 
and 30 are selected based on their 
performance, the mutation rate being the 
same. 
 
Multiple simulations using the GA approach 
were conducted in order to statistically 
describe the potential accuracy of the 
proposed algorithm.  Results were recorded of 
simulation runs that took about 600 
generations or less for conversion of the 
minimum cost.  The conversion was 
determined when the top chromosomes cost 
was less than 0.001882 for situations when 
the stars in the FOV varied from 15 to 20.  
Since no optimization of the selected 
parameters for the GA is incorporated in the 
present study, the determination of the 
accuracy potential is unaffected by the above 
mentioned selection criteria.  The actual 
(imaged) location of the bore-sight was 
selected as the origin of the star map (x = 0, y 
= 0).  Simulations resulted in a deviation not 
more than 0.0012% in the x-coordinate and 
0.000062% in the y-coordinate locations 
(xmean = -0.0018544 with a standard deviation 
of xstd = 0.0020563 and ymean = -0.00009245 
with a standard deviation of ystd = 0.000657 
units). 
 
As an example, consider the results of one 
such simulation.  The location of the FOV’s 
bore-sight was x = 0, y = 0 with an angle of 
rotation of 60° (1.0472 radians).  The 
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algorithm used 20 stars located within the 
FOV. 
 
Step 1:  The first GA requires a minimum cost 
of less than 3.0 using the distance values (see 
Figure 6).  The top chromosome of the first 
GA is x = -0.0363 and y = 0.2010.  The 
resulting cost function is 2.1825. 
 

 
Figure 6. Plot of cost function versus number 

of iterations for the first GA. 
 

 
Figure 7. Plot of cost function versus number 

of iterations for the second GA. 
 
Step 2:  A second GA requires a minimum 
cost of less than 1.0 using the distance values 
(see Figure 7).  The search area for potential 

candidate locations (chromosomes) is 
decreased to a square whose center coincides 
with the location of the top chromosome from 
the previous GA (x = -0.0363 and y = 
0.2010).  The size of the search box is equal 
to a +/-∆ = 2.40075 units; this corresponds to 
a high-end x value of 2.36445 units and a 
low-end x value of –2.43705 units.  For the y, 
the high-end value is 2.60175 units and the 
low-end value is –2.19975 units.  From this 
second GA, a top chromosome of x = –0.0059 
and y = –0.0031 is found, with a cost function 
of 0.0065.  
 
Step 3: Since convergence to the x, y value 
was achieved, another GA for finding the 
rotational angle, φ, was used.  The range of 
chromosomes considered varies from 0° to 
360°.  The top chromosome for this GA is 
60.0001° (corresponding to 1.0472 radians), 
which is approximately the same as the actual 
rotation angle.  The minimum cost for this 
GA is 0.0003712 (see Figure 8). 

 

 
Figure 8.  Plot of cost function versus number 

of iterations for the rotation angle GA. 
 

Discussion of Simulation Results 
 
It is assumed that the 300-unit wide star map 
represents a full 360° view.  For the 
simulation example described previously, this 
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results in an inaccuracy of 0.00708° for the x 
direction and 0.00372° for the y.  This 
simulation example is almost a worse case 
scenario; both xmean and ymean are closer to 
zero than x and y from the example.  Using 
the mean values, the inaccuracy of two GA 
routines is 0.00223° for the x direction and 
0.000111° for the y.  As a comparison, the 
EMS Technologies CALTRAC™ Star 
Tracker has a noise angle of ± 0.005° in the 
pitch/yaw direction4.  To increase the 
accuracy of the SGA technique, additional 
GA could be used with successively 
decreasing search areas and cost functions. 
 
The application of GA for star pattern 
recognition can still be improved by 
optimizing the parameters so that the position 
is more accurately known.  The numbers of 
stars in the star catalog is directly proportional 
to the cost function.  As the number of stars 
increases, the cost function increases.  With a 
greater number of stars there is a better 
possibility of finding the exact, distinct 
position of the image.  Implementing the 
present algorithm on a real star catalog will be 
done in later work.  For the present work, x 
and y coordinates were used.  For an actual 
star catalog, the x,y values would need to be 
converted into Right Ascension and 
Declination. Besides this minor 
transformation of coordinates, no additional 
work would need to be done to convert to the 
typical stellar catalog values. 
 
During simulations, it was noted that the time 
needed for the algorithm to converge is 
considerable.  Several reasons for this that are 
inherent to the system used are a single, PC-
technology microprocessor as well as running 
all code in MatLab (usually slower than 
running pure complied code).  One method to 
increase computational speeds for the lost in 
space operation would be to involve parallel 
processors.  Currently, a single processor (the 
desk-top computer processor) calculates the 

parameters of each chromosome (candidate 
FOV) in a sequential form, and then 
sequentially compares them to the actual 
(imaged) parameters.  Multiple parallel 
processors would allow each individual 
processor to compute the candidate’s 
parameters and cost function; if ten parallel 
processors are used, theoretically this would 
decrease the required computational period by 
ten times.  A single processor could then sort 
the cost values to determine the top 
chromosome for the iteration.  The advantage 
of the parallel processing system would be 
simultaneous computation of redundant 
multiple calculations.  Disadvantages could 
include an increase in hardware complexity, 
cost, and power consumption. 
 
Another option is to use the brightness (or 
magnitude rating) of a star as a pre-
computation filter.  In choosing GA-selected 
candidate positions, a comparison is first 
made between the magnitude of the star 
closest to the bore-sight and the star closest to 
the GA-selected position.  If the candidate’s 
magnitude is not within a given value (for 
example, ± 1) of the star nearest the bore-
sight, then there is no need to compute the 
distance vector, Di, and hence a cost function.  
Distance vectors and cost functions are only 
computed when the candidate star’s 
magnitude is within the required magnitude of 
the bore-sight star.  The ± 1 in magnitude 
accounts for any variations between star 
brightness measured with photometric 
techniques in the star tracker and those 
recorded in star catalogs. 
 

Conclusions 
 

The efforts presented in this paper 
successfully demonstrate the ability of 
spiraling Genetic Algorithms to perform the 
pattern-matching computations associated 
with the “lost in space” mode of a star sensor, 
using a randomly generated star map.  
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Multiple simulation results indicate an 
angular accuracy of 0.00223° for the x 
direction and 0.000111° for the y, which is 
within the current yaw/pitch accuracies of 
commercial systems.  To further increase the 
accuracy of the Genetic Algorithm approach, 
successive (spiraling) routines can be added 
with decreasing search pattern size and 
convergence criteria (cost function).  
Additionally, the Genetic Algorithm approach 
demonstrated the ability to successfully 
determine the “roll” rotation angle of the 
imaged pattern with respect to the celestial 
sphere’s poles. 
 
Future efforts will concentrate on the use of 
an actual star catalog with a Right Ascension 
and Declination coordinate system.  Efforts 
will also be made to optimize the Genetic 
Algorithm parameters as well as decrease the 
required computational time. 
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